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ABSTRACT

We investigate analytically and numerically the stability of bubble-like fluxons in disk-shaped heterogeneous Josephson junctions. Using ring
solitons as a model of bubble fluxons in the two-dimensional sine-Gordon equation, we show that the insertion of coaxial dipole currents
prevents their collapse. We characterize the onset of instability by introducing a single parameter that couples the radius of the bubble fluxon
with the properties of the injected current. For different combinations of parameters, we report the formation of stable oscillating bubbles,
the emergence of internal modes, and bubble breakup due to internal mode instability. We show that the critical germ depends on the
ratio between its radius and the steepness of the wall separating the different phases in the system. If the steepness of the wall is increased
(decreased), the critical radius decreases (increases). Our theoretical findings are in good agreement with numerical simulations.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0006226

The controlled insertion, transport, and stability of fluxons in
Josephson junctions (JJs) is a relevant problem for quantum infor-
mation technologies. Of the various qubits that have been imple-
mented, fluxon qubits are of particular interest because of their
potential suitability for scalability and integration in supercon-
ducting circuits. In this work, we demonstrate how to stabilize and
introduce bubble fluxons in Josephson junctions using a coax-
ial dipole current. Although point-like heterogeneities have been
theoretically studied in similar one-dimensional systems, local-
ized but not point-like heterogeneities have not been addressed
analytically in two-dimensional junctions. We predict the for-
mation of new oscillating states, generation of internal mode
oscillations, expanding bubbles, and the breaking and insertion
of new bubbles in the junction. Our results suggest a promis-
ing way for the storage and transport of information in quantum
information devices.

I. INTRODUCTION

In the last three decades, a vast research area has been
developed around the sine-Gordon (sG) system due to its many
physical realizations.1 The most significant ones are the fluxon
dynamics in Josephson junctions (JJs),2–5 spin waves in magnetic
materials,6,7 self-induced transparency in nonlinear optics,8,9 and the
Frenkel–Kontorova model of dislocations in solid state physics.10–12

These applications are of great importance for both fundamen-
tal and technological motivations. A flux quantum in a JJ can be
controlled by bias currents,3 created or perturbed by the insertion
of dipole currents,13–15 pinned by built-in heterogeneities,16–18 or
manipulated through shape engineering.4,19–21 Recent advances in
the design of wave parametric amplifiers,22,23 quantum information
processing protocols,23–26 and the controlled manipulation of heat
currents in superconducting devices27–30 are promising applications
of this system.
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A fluxon in a JJ is a physical realization of a sG soliton.1,31

When a localized external dipole current perturbs a fluxon, the
internal modes of the fluxon can be locally destabilized to produce
the insertion of a local fluxon-antifluxon pair. This phenomenon
is well understood in one-dimensional sG systems.32,33 In the two-
dimensional case, the authors have recently reported the formation
of a flux line closed in a loop with a radially symmetric bubble-like
structure: a bubble fluxon.34 The dynamics and stability of topo-
logically equivalent structures in Klein–Gordon (KG) systems have
gained significant attention in the literature, ranging from con-
densed matter to cosmology.4,35–43 Thus, theoretical studies on the
formation, stability, and dynamics of bubble-like structures are rel-
evant not only for heterogeneous sG systems but also for more
general systems.

In this article, we give an analytical and numerical study of the
stability of these bubble-like structures by the application of external
forces. We demonstrate that the insertion of coaxial dipole currents
may stabilize such structures. We provide a theoretical descrip-
tion of the response of bubble fluxons to the coaxial dipole current
intensity, finding a stabilization domain. Furthermore, we show that
internal mode dynamics generates remarkable phenomena, such as
the formation of oscillating states, bubble instability, and bubble
breakup. The article is organized as follows. In Sec. II, we present the
system and the model of bubble fluxons in JJs. In Sec. III, we show
analytically and numerically that the insertion of coaxial dipole cur-
rents in the junction stabilizes bubble fluxons. In Sec. IV, we perform
the linear stability analysis of the bubble solutions. Finally, we give
our conclusions and final remarks in Sec. V.

II. FLUXON BUBBLES IN JOSEPHSON JUNCTIONS

JJs are built as two superconductors separated by a thin dielec-
tric layer.44 A superconducting Josephson current composed by tun-
neling Cooper pairs crosses the junction. This produces a jump on
the phase φ of the wave function of the superconducting electrons
across the JJ. Such a tunneling current may create a loop that con-
tinuously goes from one superconductor to the other, forming the
so-called Josephson vortex. These loops of current are represented
by the well-known sG kink and antikink solutions, corresponding
to a 2π-twist of superconducting phase φ.31,44 A Josephson vortex
induces a local magnetic flux trapped in a JJ. Each sG kink carries a
quantum of magnetic flux 8o := h/2e, where h is the Planck’s con-
stant. This is the so-called fluxon. Kink solutions are associated with
fluxons, whereas antikink solutions are associated with antifluxons.
Each direction of the loop of current is associated with the opposite
signs of sin φ(x) in different portions of the kink/antikink. There-
fore, the center of the kink/antikink corresponds to the position of
the fluxon/antifluxon.

The propagation of fluxons in disk-shaped JJs is governed by
the following two-dimensional sG equation:31,44

∂ttφ − ∇2φ + γ ∂tφ + sin φ = F(r), (1)

where φ = φ(r, t) is the quantum mechanical phase difference of the
superconductors, r = (r, θ) is the vector position in polar coordi-
nates, and ∇2 := ∂rr + r−1∂r + r−2∂θθ is the Laplace operator. The
third term of the left-hand side of Eq. (1), which plays the role of
dissipation, represents the normal component of the tunnel

current.45 The space-dependent force F(r) represents non-uniform
external perturbations introduced in the junction, such as dipole
devices of electrical current.14,15,46 Indeed, current dipole devices
define an influx and an outflux zone separated by a small dis-
tance, creating a loop of electrical current in the junction. This
loop of current induces a magnetic flux that perturbs nearby flux-
ons.

We investigate the stability of bubbles in JJs in the framework
of the qualitative theory of nonlinear dynamical systems.47 Bubbles
of one phase in a space filled with another phase are heteroclinic tra-
jectories joining fixed points of the underlying sG potential.48 The
coexistence of two heteroclinic solutions, one joining phases from
φ0 to φ1 and other joining phases from φ1 back to φ0, gives a model
for a bubble profile. For instance, ring solitons,49 kink–antikink
pairs, and other topologically equivalent solutions are physically rel-
evant models for bubbles.50 Inspired on fluxon bubbles reported
in two-dimensional JJs,34,37,51,52 we construct bubble-like profiles in
the following manner. Circular ring soliton solutions of Eq. (1)
are given by φR(r) = 4 arctan exp[−(r − ro)], where ro denotes the
radius of the soliton.49,51,52 In the case of a long one-dimensional
JJ, it is known that a current dipole device may perturb the shape
and the width of a fluxon32,33,50 (see Fig. 1). A local region of out-
flux (influx) current exerts a positive (negative) force in the 2π-wing
(0-wing) of the fluxon. The soliton is being stretched due to these
forces acting on its wings in opposite directions, changing its width.

FIG. 1. Dynamics of a fluxon under the influence of a current dipole device in
a long (one-dimensional) Josephson junction. The kink profile of the fluxon (nor-
malized by 2π ) is depicted in (blue) solid line. Under the influence of the current
dipole, depicted in (green) dashed line, the fluxon is perturbed by counter-directed
forces on its wings, producing a change on its width. The perturbed fluxon profile
(normalized by 2π ) is depicted in (red) dashed-dotted line.
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The perturbed kink in its steady state is less steep than the unper-
turbed kink due to such a stretching, as depicted in Fig. 1. For
sufficiently large values of the influx/outflux current, the fluxon can
be destroyed by the stretching. This is associated with an internal
(shape) mode instability, a phenomenon where the kink profile is
no longer stable.32,33

In the two-dimensional case, two-dimensional dipole currents
may produce similar effects in the walls of a ring soliton. To
take into account the change in the width of the wall of a ring
soliton under the influence of some external force, we introduce
a shape parameter B according to φR(r; B) = 4 arctan exp[−B(r −
ro)]. Moreover, bubble-like fluxons must have a kink/antikink pro-
file at the walls and a well-defined derivative in the limit ro →
0.34 To obtain bubble-like profiles satisfying such conditions, we
define the positive and negative bubbles as φ+ := φn − φp and
φ− := φp − φn, respectively, where φp(r) := 4 arctan exp[B(r − ro)]
and φn(r) := 4 arctan exp[B(r + ro)]. In Figs. 2(a) and 2(b), we
depict these profiles, which have a bubble-like shape indeed. It fol-
lows that the bubble profile φ± can be written in a more compact
form as

φ±(r) = 4 arctan[±A sech(Br)], (2)

where A := sinh(Bro) is a single real parameter that couples the two
relevant parameters of our system, namely, B and ro. Under no exter-
nal perturbations, the bubble structure φ± collapses toward its center
where finally annihilates.37,51

Knowing the behavior of heteroclinic solutions in the neigh-
borhood of fixed points and separatrices, it is possible to construct
other functions with the same topological properties. Thus, in the
sense of the qualitative theory of nonlinear dynamical systems,47

it is possible to generalize analytical results obtained for the solu-
tion of Eq. (2) to other bubble solutions that are topologically
equivalent.

III. CONTROLLING BUBBLES WITH EXTERNAL

PERTURBATIONS

For quantum information technologies, it is of crucial
importance the control, the insertion, stability, and transport of
fluxons. Thus, a natural question is whether we can control the
bubble structures of Sec. II by the application of some external
perturbation. Indeed, we have obtained that the insertion of a
coaxial current dipole device in the junction can stabilize such
structures.

Let us briefly consider Eq. (1) under a homogeneous and
constant external force F(r) = f. Stable solutions obey ∇2φ −
dUeff(φ)/dφ = 0, where Ueff(φ) := U(φ) − fφ is the effective poten-
tial, and U(φ) := 1 − cos φ is the sG potential. Stable and homo-
geneous solutions of such a system correspond to the minima of
Ueff(φ) and describe different phases. Static bubbles represent con-
figurations, where φ is in one phase everywhere except for a finite
domain where it is in another phase. If f = 0, the potential Ueff(φ)

= U(φ) has infinitely many degenerate phases, and bubbles like
Eq. (2) shrink. However, if 0 < |f| < 1, Ueff(φ) has infinitely many
barriers separating coexisting metastable phases. In this case, sta-
tionary bubbles in the sG system are similar to the nontopological
solitons arising in nonlinear Schrödinger (NLS) systems with com-
peting interactions,53 which are well known to be unstable if they
are not propagating.53,54 These non-propagating NLS-bubbles grow,
converting a metastable phase to a more stable phase, thus seeding
phase transitions.

Now let us return to the case of bubbles on Eq. (1) driven by a
space-dependent force F(r). Following the previous discussion, we
notice that regions with 0 < |F(r)| < 1 will introduce local compet-
ing interactions that may enhance the growth of non-propagating
bubbles, whereas regions with F(r) = 0 will enhance their collapse.
Thus, a heterogeneous force may introduce the required balance to
stabilize bubble-like structures such as Eq. (2). In the context of
fluxon dynamics in JJs, the influence of a current dipole device is

FIG. 2. (a) Positive and (b) negative bubble-like fluxons. The insets show the profile of each structure as a function of the radial coordinate r .
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modeled through an additive space-dependent external force in the
sG equation.13,14 Thus, to calculate the family of forces that can sta-
bilize these bubble fluxons, we solve an inverse problem similarly to
previous works.32,33,50,55 Let us consider the bubble profile of Eq. (2)
as the initial condition. After substitution in the sG equation (1), we
obtain that φ± is an exact solution if the external force is given by

F±(r) =
[

±2(B2 − 1)α(r) +
2B

r
β(r) tanh(Br)

+ ϒ (α(r) − β(r))

]

sech(Br), (3)

α(r) := −2A
1 − A2 sech2

(Br)
[

1 + A2 sech2
(Br)

]2 , β(r) :=
−2A

1 + A2 sech2
(Br)

,

(4)

where ϒ := 2B2/A2. Figure 3 shows F+ for the given values of
parameters. It is important to remark that as r → 0, the second
term in the square brackets of Eq. (3) goes to zero since the fac-
tor β(r) tanh(Br) decays to zero exponentially in that limit. Regions
with F± < 0 (F± > 0) correspond to an area in the junction with
an influx (outflux) of current. A coaxial dipole current is defined by
an influx and outflux zone separated a distance D. Given the cur-
rent distributions, such zones have a finite decay width. This latter
is physically consistent with an actual dipole current in experimen-
tal setups, where point-like dipoles are not realistic. If the distance
D is of the order of the decay width, the dipole is no longer defined.
The dipole existence range is determined by the interplay of both
B and r0. In Fig. 3(b), we show that F+ represents a coaxial dipole
current for r0 = 25.0, B = 1.2, and B = 0.8. For B = 1, the distance
D is smaller than the decay width and, therefore, the force F+ can-
not be regarded as a dipole current. If the force has a dipole profile,

such a pair of influx/outflux current generates a local magnetic field
that affects the dynamics of fluxons in the junction. Indeed, from a
purely geometrical point of view, this ring-like force can be regarded
as a solid of revolution formed by the dipole currents considered in
Refs. 13, 14, and 34. The total current I ∝

∫

dV F±(r) from the dipole
is always negative. Therefore, the dipole is injecting current into the
junction, providing energy that can be used to stabilize fluxon bub-
bles. The axial symmetry of the force allows the manipulation of
rotationally symmetric localized structures, such as bubbles. Notice
that parameter B is associated with both the intensity of the current
and the spatial extension of the injection area.

We have performed numerical simulations of Eq. (1) with the
positive bubble φ+ from Eq. (2) as the initial condition, homoge-
neous Neuman boundary conditions, and γ = 0.01. For the Laplace
operator, we have used finite differences of second-order accuracy
with steps dx = dy = 0.1. The time integration was performed using
a fourth-order Runge–Kutta scheme. Figure 4 shows the result for
the given values of the parameters. Figure 4(a) shows a positive bub-
ble perfectly stabilized by F+. This is the equilibrium configuration
of the system, where both the bubble and the force has the same
radius (see inset with the profiles of φ+ and F+ at y = 0). More-
over, we can also consider coaxial forces with a different radius than
the initial bubble. Numerical simulations show that for B = 1.2, the
force stabilizes bubbles if the difference between the radii is at most
10% of the bigger radius. That is, if the initial radius of the bubble is
smaller by more than a 10% of the radius of the force, then the coax-
ial dipole current is too far from the walls of the bubble to prevent its
collapse. The bubble collapses almost as it were unperturbed. If, on
the other hand, the initial radius of the bubble is bigger by more than
a 10% of the radius of the force, then the bubble begins to shrink for
enough time to gain relatively high speed. The coaxial dipole can-
not capture the wall of the bubble because it passes very fast, and the
bubble collapses.

FIG. 3. (a) The ringlike force of Eq. (3) for B = 1.2, modeling a coaxial current dipole with a radius ro = 25.0 inserted into the Josephson junction. (b) Profile of F+ as a
function of r for ro = 25.0 and different values of B.
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FIG. 4. Spatiotemporal evolution of bubble fluxons with an initial radius ro under the action of a coaxial dipole current with a radius R for γ = 0.01, B = 1.2, and dt = 0.005.
(a) A stable positive bubble for ro = R = 30.0. (b) An oscillating state for ro = 30 > R = 28.5. The area of the bubble performs damped oscillations around the equilibrium
radius R. (c) An oscillating state for ro = 30.0 < R = 31.5. The upper insets show the profile at y = 0 of the initial bubble and the ring-like force for each case.

In any other circumstance, the wall of the bubble does not have
enough time to gain too much speed, and the coaxial dipole traps
the bubble, preventing its collapse. In Fig. 4(b), we show the for-
mation of an oscillating bubble solution for the given values of the
parameters. The initial condition is a fluxon bubble whose radius is
bigger than the radius of the force. The bubble shrinks and is cap-
tured by the dipole, making damped oscillations in time around the
equilibrium configuration. In Fig. 4(c), we show the formation of a
similar oscillating state from a bubble whose radius is smaller than
the radius of the force. In this case, the bubble is expanded due to an
attractive interaction with the coaxial dipole, making again damped
oscillations around the equilibrium configuration.

IV. STABILITY ANALYSIS OF BUBBLE FLUXONS

In this section, we perform a linear stability analysis of the
bubble solutions of Eq. (2) under the action of the ring-like
force of Eq. (3). For that purpose, we write the perturbed sG
equation (1) as

∂ttφ − ∇2φ + γ ∂tφ − G(φ) = F(r), (5)

where G(φ) := −dU/dφ and U(φ) := 1 − cos φ. To investigate the
stability of the structure φ±, let us consider a small-amplitude
perturbation χ around such solution, i.e.,

φ(r, t) = φ±(r) + χ(r, t), (6)

χ(r, t) := f(r)eλt, |χ | � |φ±|∀(r, t), (7)

with λ ∈ C. Expanding G(φ) with φ ∼ φ± neglecting terms of
order O(|χ |2), and after substitution of Eqs. (6) and (7) in the sG
equation (1) with F(r) = F±(r), we obtain for f(r) the following

eigenvalue problem:

− ∇2f + V±(r)f = 0f, (8)

with

0 := −λ(λ + γ ), (9)

where V±(r) := cos φ±(r) − 1. Equation (8) is equivalent to the
time-independent Schrödinger equation. The potential V±(r)
:= 1 + V(r) is the same for both structures, the positive and negative
bubbles, where V(r) is given by

V(r) = −
8A2 sech2

(Br)
[

1 + A2 sech2
(Br)

]2 . (10)

From potential (10), we can identify two delimited regions
of parameter A for which the system exhibits different qualitative
behaviors. Figure 5(a) shows the profile at y = 0 of the potential (10)
for different values of A. For A ≤ 1, Eq. (10) at y = 0 is a hyper-
bolic potential well, while for A > 1, it is a hyperbolic double-well
potential, as shown in Fig. 5(a). Indeed, for A < 1, the potential
(10) has only one real and stable equilibrium point at the origin.
Above the critical value A = Ac := 1, the equilibrium point at the
origin turns unstable, and two new real stable points appears at
x = x± := ±B−1acosh(A). Thus, at A = Ac, the profile of potential
V passes from a single-well to a double-well structure through a
pitchfork bifurcation, as shown in Fig. 5(b). The system has very
different dynamics in each region, which are separated by the bifur-
cation point A = Ac. In the following, we investigate the dynamics
of the system in each region.
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A. The double-well region (A >1): Stable bubbles,

oscillating states, generation of internal modes, and

bubble insertion

In the case A > 1, the potential of Eq. (10) has a double-well
structure, as depicted in Fig. 6 for different values of B. We notice
that if A → ∞, then V(0) → 0 and x± → ∞, which means that the
separation of the minima of the double-well increases indefinitely as
A → ∞. This behavior can also be seen in Fig. 5(a). Therefore, in the
limiting case A � 1, the double-well potential (10) can be regarded
as two independent single wells very far from each other. Let us
define ξ := sech(Br) and ξ± := sech(Bx±). After a Taylor expansion
of the potential with ξ ∼ ξ±, and noticing that ξ± → 0 as A → ∞,

FIG. 5. (a) Potential of Eq. (10) for B = 0.25 and the indicated values of A. At
A = 1, the system bifurcates from a single-well to a double-well potential. (b)
Bifurcation diagram of V(x, y = 0), showing the position of the equilibrium (fixed
points) at the origin, x+ and x− as a function of the bifurcation parameter A. A
pitchfork bifurcation occurs at A = Ac = 1. Solid lines denote stable fixed points,
whereas dashed lines denote unstable fixed points.

FIG. 6. The double-well potential of Eq. (10) at y = 0 for A = 1.5 and the given
values of B. The walls of the double-well become steeper as B increases.

one obtains that the potential behaves locally for r ∼ x+ as

V(r) ' −2 sech2[B(r − x+)], (11)

which is the so-called modified Pöschl–Teller potential hole.56

Thus, away from the bifurcation point, the double-well potential of
Eq. (10) behaves as two effective Pöschl–Teller potentials far from
each other.

Notice that from the condition A � 1 follows Bro � 1, which
means that the radius of the bubble is much greater than 1/B. In
such a limit, the curvature effects are negligible (∇2 ' ∂rr). Thus,
the system can be regarded as quasi-one-dimensional, obtaining
a good estimate of the bound states of the eigenvalue problem
(8) by solving the Schrödinger equation at each well separately.
Indeed, the Schrödinger equation (8) for the Pöschl–Teller potential
can be solved exactly56 and has appeared previously in the liter-
ature for the stability analysis of many nonlinear structures, such
as one-dimensional sine-Gordon kinks.32,33,50,55,57 The eigenfunctions
determine the oscillations around the bubble solution. The scatter-
ing states, corresponding to the continuous spectrum, are generally
called phonon modes.58 Meanwhile, the soliton modes correspond
to the bound states, whose eigenvalues lay in the discrete spectrum59

and are given by the formula

0n = B2(3 + 23n − n2) − 1, (12)

with 3(3 + 1) = 2/B2. The integer part of 3, [3], yields the num-
ber of eigenvalues in the discrete spectrum (n < [3]), including the
translational mode 00 and the internal shape modes 0n with n > 0.
Notice that for B2 = 1 we obtain 00 = 0, and the system possesses
translational invariance for r sufficiently large. This zero-frequency
bound state is the Goldstone mode.

We can now predict theoretically the response of fluxon bub-
bles to the coaxial dipole current for different values of the control
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FIG. 7. Schematization of the results obtained from the linear stability analysis in
the double-well region (A � 1).

parameter B. Figure 7 summarizes the results. Such results are valid
for both positive and negative bubble solutions.

1. Stability of the translational mode

Returning to Eq. (9), we note that 0 has a quadratic depen-
dence on λ with roots {0, −γ } and a maximum 0max = γ 2/4 at λmax

= −γ /2. From Eq. (9) follows λ = (−γ ±
√

γ 2 − 40)/2, which can
be complex if γ is small. Near the origin (λ = 0), the stability of the
mode is determined by the sign of 0, being stable (unstable) if 0 > 0
(0 < 0). Thus, if the nth mode is stable (0n > 0) and γ 2 − 40 < 0,
the bubble walls will oscillate at a frequency ωn =

√

40n − γ 2/2
with a decay rate of −γ /2. On the contrary, if the nth mode is
unstable (0n < 0), the mode grows with no oscillations.

Imposing 0n > 0, we obtain the conditions for stability of the
nth mode in terms of the control parameter B2. Thus, the condition
for stability of the translational mode (λ0 < 0) is B2 > 1.32,33,50 In this
case, the ring-like force stabilizes the bubble to a fixed radius equal
to the radius of the force itself. Indeed, the combination of param-
eters of the numerical simulations showed in Fig. 4 corresponds to
this case, and the theory predicts the stability of the bubble correctly.
In the simulation of Fig. 4(a), the core of the bubble wall is exactly at
the stable equilibrium position, and the bubble is completely station-
ary. If we displace the core of the wall from this equilibrium point
slightly, then the wall oscillates around the stable equilibrium—see
Figs. 4(b) and 4(c). We calculate the frequency of oscillation of

such states computing the fast Fourier transform of the bubble-wall
position in time. For the states shown in Figs. 4(b) and 4(c), we
obtain ω = 0.29 (T = 21.9443) and ω = 0.33 (T = 19.2012), respec-
tively. These values are in great agreement with the theoretical
translational-mode frequency ωo for B = 1.2.

If 1/3<B2<1, the translational mode becomes unstable with
no oscillations and no internal modes.32,33,50 Under these conditions,
the equilibrium points x± are now unstable. Therefore, if the initial
radius of the bubble is smaller than the radius of the ring-like force,
the bubble will collapse. If on the contrary, the initial radius of the
bubble is bigger than the radius of the force, the external force will
push the bubble wall away, and the bubble will expand. Eventually,
the curvature force that tends to collapse the bubble compensates
the repulsion due to the ring-like force. The acceleration of the bub-
ble expansion will be zero when one force equilibrates the other, and
eventually, the bubble wall will go backward.

The dynamical behavior observed in Fig. 8(a) agrees with these
theoretical findings. The initial condition is a positive bubble, which
has a radius ro slightly bigger than the radius rf of the coaxial dipole
current. The instability of the translational mode produces a motion
of the bubble wall away from the unstable fixed point located at the
zero of the force. This instability along with the return effect pro-
duces the oscillatory behavior of the bubble area, as expected. Note
that the origin of these oscillations is different than those observed
in Figs. 4(b) and 4(c).

2. The existence of stable internal modes

The repulsion from the dipole current becomes stronger, and
the translational mode turns more unstable as B decreases. Indeed,
we notice in the simulation of Fig. 8(b) that the bubble reaches a
bigger radius during the first burst than in Fig. 8(a). The oscillating
states of Fig. 4 are similar to the oscillating state of Fig. 8(a).

Although the dynamics of the bubble in Fig. 8(b) is similar as
in Fig. 8(a), we notice the presence of small oscillations near the zero
of the ring-like force in this last case. This is, indeed, evidence of the
existence of a stable oscillatory-internal-mode in the system. Indeed,
if 1/6 < B2 < 1/3, the translational mode is unstable and the first
internal mode of the bubble will appear.32,33,50 In this case, we obtain

FIG. 8. (a) A stable bubble due to the equilibrium of competing forces for (B, ro, rf ) = (0.8, 8.7, 8.3). (b) A stable bubble oscillating at a lower frequency for (B, ro, rf ) =
(0.5, 8.7, 8.3). The oscillations from a stable internal mode can be clearly appreciated. (c) An unstable bubble for (B, ro, rf ) = (0.261 50, 16, 15.3). The oscillations of the
internal mode become more complex due to the emergence of more than one internal mode. In all cases, dt = 0.05.
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λ1 < 0. Therefore, this internal mode is stable. The width of the
bubble walls will be oscillating at a frequency equal to ω1 ≈

√
01.

The numerical simulation of Fig. 8(b) is in this range of parameters.
Given that the translational mode of the wall is still unstable in this
case, the bubble area initially expands. The parameter B is lower in
this case than in the previous simulation. Thus, the maximum of the
ring-like force is bigger and the bubble expands.

In case B2 < 1/6, more internal modes will appear,32,33,50 and
the oscillations in the walls become complex. There is a contribution
of more than one frequency in this case. The simulation of Fig. 8(c)
illustrates this scenario. More than one stable internal modes are
present in the system, and the collapsing force is too weak compared
to the repulsion from the current dipole. The translational mode is
highly unstable, and the bubble expands.

3. Bubble breakup by internal mode instability

We have seen that for sufficiently small values of B, the trans-
lational mode of the bubble wall can become unstable. An impor-
tant question is whether the internal modes of the wall can also
become unstable for sufficiently small values of B. Indeed, if B2 <

3̃, where 3̃ := 2/3∗(3∗ + 1) and 3∗ := (5 +
√

17)/2, the first
internal mode becomes unstable.32,33,50 Figure 9 shows the bubble
breakup. The initial bubble expands due to the instability of the
translational mode, but soon after this expansion, more structures
are inserted in the system by the coaxial dipole current. This inser-
tion of new structures is due to the creation of a pair kink–antikink
in the wall of the initial bubble.

Figure 9(a) shows that a new structure is inserted in the system
around t = 0.17 for B = 0.261. The internal shape-mode instability
produces the breaking of the wall of the bubble, and it acquires a
ladder-like profile that expands in time. This new structure is a disk-
shaped bubble, whose inner and outer radius is denoted as Ri and
Ro, respectively. The inner (outer) wall of the inserted disk-shaped
bubble is an antikink (kink) and, therefore, is trapped (ejected) by
the coaxial force. Thus, Ri performs damping oscillations around the
equilibrium point rf while Ro grows in time, as we show in Fig. 9(a).
The generated disk-shaped bubbles are always expanding structures.

The number of inserted bubbles depends on the actual value
of parameter B. Figure 9(b) shows that more bubbles are rapidly
inserted in the system for B = 0.255. The generated traveling ladder
has more steps for decreasing values of parameter B. Figure 10 shows
a typical configuration of the system after the initial breakup of the
bubble, where an expanding disk-shaped bubble is appreciated.

B. The single well region (A <1): Unstable bubbles

In the case A < 1, Eq. (10) for y = 0 is a potential well—as pre-
viously shown in Fig. 6. Moreover, in the limiting case A � 1, it
reduces to

V(r) = −8A2 sech2
(Br), (13)

which is also a Pöschl–Teller potential hole whose exact solutions are
known.56 However, here, we show that in this region of parameters,
the force F± is no longer a coaxial dipole, and the system does not
support stable bubble solutions.

In sG systems, as in more general KG systems, it is well known
that the zeroes of an external force are fixed points for kink and

FIG. 9. Bubble breakup obtained with dt = 0.05 and (a) B = 0.261 and (b) B =
0.255. In both cases, ro = 16 and rf = 15.3.

antikink solutions.32,33 Given that the walls of the bubble solu-
tions φ± can be regarded as a pair kink–antikink in the r-domain,
the zeroes of F± are fixed points that may stabilize the structure.
Figure 11 shows the force as a function of x at y = 0 for the given
values of A. For A > 1, that is, in the double-well regime, the force
has two fixed points that may contribute to the stabilization of bub-
ble fluxons. If the fixed points are stable, a nearby bubble wall will be
attracted by the fixed points, and either a stationary or an oscillatory
bubble will be observed. This is the case of the simulations of Fig. 4.
On the contrary, if the fixed points are unstable, then a nearby bub-
ble wall will be ejected from the fixed point, and one would observe
one of the structures reported in Figs. 8 and 9.

Diminishing the value of A toward Ac := 1, the system
approaches the bifurcation point, and the zeroes of the force
approach each other. This is indicated in Fig. 11 by the direction
of the red arrows. The minima of the associated double-well poten-
tial have similar behavior as the fixed points of the walls as A → 1.
At the bifurcation point, the two fixed points collide and annihilate
each other! At this point, the external force is no longer a coaxial
dipole. For A < 1, there are no fixed points, and the system does not
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FIG. 10. An expanding 2π–4π disk-like bubble generated inside the initial 0–2π
bubble for B = 0.261, ro = 16, rf = 15.3, and t = 0.725.

support stable bubble solutions anymore. Numerical simulations
have confirmed our analysis. All bubbles in this region of parameters
collapse.

Figure 12 shows a representation of the parameter space
that summarizes our findings. The blue (red) region denotes

FIG. 11. Profiles of the coaxial force F+ for B = 0.5, y = 0, and the indicated
values of A as a function of x. For A = 10.2 > 1 (ro ' 6.0359), the force has
two fixed points for the position of the bubble walls. At A = 1 (ro ' 1.7627), such
stable points collide at the origin. For A = 0.8 < 1 (ro = 1.4653), there are no
fixed points, and the system does not support stable bubble solutions.

FIG. 12. Parameter space {ro, B}, indicating the regions for stable and unsta-
ble bubble fluxons. The boundary between both regions is given by the points
satisfying the condition Ac = sinh(Bro), which gives the onset of instability.

combinations of parameters, where bubble fluxons are unstable
(stable). Bubble fluxons are stable for A > 1 and unstable for A < 1.
The onset of instability that determines the boundary between both
regions is given by the condition sinh(Bro) = 1 = Ac. Thus, the sta-
bility of bubble fluxons is described by a single parameter A that
couples the two relevant parameters of the system. Given that ro is
related to the equilibrium radius of the bubble fluxon and B is related
to the injected current, from Fig. 12, it is possible to determine the
coaxial dipole current needed for the stabilization of a bubble with a
given radius.

The bubble fluxons studied in this work can be regarded as a
structural phase transition, where the superconducting phase differ-
ence is driven to a new phase by an instability. In order to produce
a transition from one phase to another, a critical germ (a bubble
with a minimum critical radius) is usually considered in the lit-
erature for the development of an instability that is energetically
above a nucleation barrier.50,60 In our model, the condition ro > 1/B
holds for bubbles with steep walls, where the bubble decay length
is smaller than its radius. This case corresponds to A > 1, which is
above the onset of instability. Thus, a bubble fluxon can be stabilized
by a coaxial dipole if the steep of the walls is large compared to its
radius. Conversely, the region A < 1 corresponds to the condition
ro < 1/B, which holds when the bubble decay length is larger than
its radius. In this case, the bubble is almost collapsed near the origin
and there is no coaxial dipole capable of preventing its annihilation.
Previous works have considered the critical germ only in terms of
the minimum radius required in the field configuration φ(r, t).50,60–63

The results from our model lead us to the important conclusion that
the critical germ is determined by an interplay between its radius and
the steepness of the wall separating the different phases in the sys-
tem. If the steepness of the wall is increased (decreased), the critical
radius decreases (increases).
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FIG. 13. Comparison of topologically equivalent forces for y = 0. The external
force of Eq. (3) is depicted in (blue) dashed line for B = 0.261 and rf = 15.3. The
equivalent force of Eq. (14) is depicted in (yellow) solid line for γ = 3.2, σ = 4.2,
ro = 15.3, and a = 1.1.

V. CONCLUSIONS AND FINAL REMARKS

We have investigated theoretically and numerically the stabil-
ity of bubble-like fluxons in two-dimensional Josephson junctions.
Although they are unstable under no external perturbations, we have
shown that such structures can be stabilized by the insertion of coax-
ial current dipole devices. Using a single parameter A := sinh(Bro)

that couples the geometrical properties of the bubble and the coaxial
dipole, we have determined the condition for the formation of stable
bubbles. We have predicted theoretically the creation of oscillating
states, the generation of internal mode oscillations and the bubble
breakup due to shape mode instabilities. We have also obtained that
the steepness of the walls plays an important role in the critical
germ: if the steepness of the wall is decreased (increased), the crit-
ical radius increases (decreases) and a dipole current can stabilize
bubbles with large (small) radius. We emphasize that the bubbles
studied in this work are different from the non-topological dark
solitons studied in NLS systems with competing interactions.53,54

Bubbles are unstable in such NLS systems and competing interac-
tions occur homogeneously in space. On the contrary, bubbles in
our sG system are stabilized by a space-dependent external force and
competing interactions occur only in a localized region of space due
to the heterogeneity of the force.

As a final remark, notice that if we consider large deviations
from the bubble solution (2) and the coaxial current (3) and (4), the
system will also show large deviations from the original behavior.
However, our results will not change substantially if the topolog-
ical properties of the modified profiles are preserved, according
to the qualitative theory of nonlinear dynamical systems.47 Thus,
any system that resembles ours in the form of the bubble solution
(2) or coaxial current (3) and (4) will have the same qualitative
behavior near separatrices and fixed points. This point is extensively

addressed in the literature.33,34,39,59 In our case, any localized force
with a fixed point at a certain value of r surrounded by two extreme
values will be qualitatively equivalent to Eq. (3). Similarly, any bub-
ble solution with a kink-like profile connecting the phases φ0 := 0
and φ1 := 2π will be qualitatively equivalent to Eq. (2).

We conclude that the dynamics of fluxon bubbles in our sys-
tem is a robust phenomenon. Indeed, the results presented in this
article can be extended to other systems with topologically similar
heterogeneities. A particular example is the following superposition
of Gaussian-like functions:

G(r) = γ
[

e
− 1

2σ2 (r−ro+a)2 − e
− 1

2σ2 (r−ro−a)2
]

, (14)

which is depicted in Fig. 13 for the given values of the param-
eters. It is asserted that F+ and G are topologically equivalent
forces for the corresponding values of the parameters. For the
force F+, we have obtained analytical solutions in full agreement
with the numerical simulations shown in Fig. 9(a). Notwithstand-
ing this, numerical simulations under the force G show qualitatively
the same results. For the following set of parameters {γ , σ , ro, a}:
{0.9, 0.8, 30.0, 0.4}, {0.9, 0.8, 29.0, 0.4}, force (14) reproduces the
same results shown in Figs. 4(b) and 4(d), respectively. It is also pos-
sible to reproduce all the phenomena reported in this article using,
for instance, the following bubble-like profile:

φN(r) =
H

2

[

tanh

(

r + ro

S

)

+ tanh

(

ro − r

S

)]

. (15)

For H = 2π , φN and φ+ are topologically equivalent bubbles.
For the following set of parameters {S, ro}: {3.5, 8.7}, {6.5, 16.0},
bubble (15) driven by the force F+ in Eq. (3) reproduces the same
results shown in Figs. 8(b) and 9(a), respectively. The results are
robust even in the presence of small-amplitude additive noise in
the sG equation (1), whose physical origin can be attributed, for
instance, to thermal fluctuations.64 In brief, we have reproduced all
the results presented in this article using several combinations of the
parameters of G and φN.

In summary, the results of this article provide a robust and gen-
eral mechanism of control, trapping, and breaking of bubble fluxons
in JJ devices. Our analytical results are in good agreement with
numerical simulations and suggest a promising way for the stor-
age and transport of heat and information in quantum information
devices.

SUPPLEMENTARY MATERIAL

See the supplementary material video for an overview of the
bubble fluxon dynamics in 2 + 1 dimensions using different combi-
nations of parameters.
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