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Localized Faraday patterns under heterogeneous parametric excitation
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Faraday waves are a classic example of a system in which an extended pattern emerges under spatially uniform
forcing. Motivated by systems in which uniform excitation is not plausible, we study both experimentally
and theoretically the effect of heterogeneous forcing on Faraday waves. Our experiments show that vibrations
restricted to finite regions lead to the formation of localized subharmonic wave patterns and change the onset of
the instability. The prototype model used for the theoretical calculations is the parametrically driven and damped
nonlinear Schrödinger equation, which is known to describe well Faraday-instability regimes. For an energy
injection with a Gaussian spatial profile, we show that the evolution of the envelope of the wave pattern can be
reduced to a Weber-equation eigenvalue problem. Our theoretical results provide very good predictions of our
experimental observations provided that the decay length scale of the Gaussian profile is much larger than the
pattern wavelength.
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I. INTRODUCTION

Pattern formation is a major area of nonlinear dynam-
ics [1,2]. During the past decades, major progress has been
achieved in understanding how an extended system with
homogeneous conditions can spontaneously go from a basic
homogeneous state to a self-organized pattern [3,4]. However,
a renewed interest has come from the observation of spatially
localized states in uniform and nonuniform systems [5–7]. In
uniform systems, localized patterns arise in bistable regions.
An extended pattern solution and a homogenous one coexist,
setting up a family of solutions via snaking bifurcations [8].
In heterogeneous media, a local spatial pattern can develop
from the nonuniformity of system parameters, such as forcing
or dissipation. In this latter scenario, the dynamical behavior
of the system suffers modifications as corrections on the
instability domains and threshold discretization [9–12]. In
particular, the concept of global mode has been introduced
to characterize the synchronized response of the system to the
localization of the forcing.

Alligator’s water dance is a striking example in nature
of heterogenous forcing. Crocodiles and alligators are able
to create spectacular local Faraday waves—spatial station-
ary subharmonic responses—on the water surface through
the infrasonic resonance of their lungs [13,14]. The water
dance is used as an advertisement call for mating purposes
of male individuals and has shown to be crucial for repro-
duction. Direct observations of this phenomenon, both in
animals in nature or captivity, suggest that the infrasonic
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radiating waves spread several kilometers under water. Once
females approach, localized Faraday waves on the surface of
the water will provide a visual signature of the size of the
animal [14,15].

In the literature, there have been many efforts to study
parametrically forced systems. Some of them have focused on
the dynamics of localized structures such as solitons [16,17],
local defects [18,19], finite-size effects [20,21], linear-depth
gradients in a water trough [22,23], and Gaussian parametric
injection in optical systems [24]. However, very scarce studies
explore the dynamics of localized Faraday waves induced by
heterogenous forcing in laboratory conditions [7]. A thorough
understanding of these systems may help us to understand
how female alligators can decode the male size from Faraday
wave signals. Proper tuning of heterogeneous parameters may
also allow us to engineer the outcome of subharmonic out-
of-equilibrium systems that could be used for technological
applications [25,26].

In this article, we study both experimentally and theoret-
ically the Faraday instability generated by localized forcing.
Our experimental setup consists of a water channel with a
deformable bottom. The system is theoretically modeled by
the parametrically driven and damped nonlinear Schrödinger
(PDNLS) equation [27,28] with a spatial varying forcing pa-
rameter. Assuming a Gaussian profile for the injection, we use
a WKBJ scaling technique [10] to derive an eigenvalue Weber
equation that governs the pattern envelope. Consequently the
response of the system is discrete and the solutions are shown
to be Hermite polynomials with Gaussian modulation. From
the weakly nonlinear analysis, we successfully describe the
nonlinear saturation of the patterns close to the threshold
of the instability of the fundamental Gauss-Hermite mode.
The theoretical results are in very good agreement with
experiments.
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FIG. 1. Experimental setup used to generate a localized injection
of energy in a Faraday-wave configuration. The soft bottom is
attached to a set of pistons, each linked to a rotary cam system
attached to a common shaft and a brushless motor. Amplitude and
frequency can be independently programed.

The article is organized as follows. In Sec. II we show our
experimental setup and describe our measurement protocols.
The theoretical description of the localized Faraday patterns
is given in Sec. III and numerical simulations in Sec. IV. We
provide final remarks and conclusions in Sec. V.

II. EXPERIMENTAL SETUP
AND MEASUREMENT PROTOCOL

Our experimental setup consists of a transparent rectangu-
lar water channel 15 mm long, 490 mm wide, and 100 mm
deep, whose bottom has a central soft region 240 mm wide
manufactured in a soft silicone elastomer (Shore hardness
OO). The assembly rests over a system of 13 pistons evenly
spaced (�x = 16 mm), each of them constrained to vertical
motion by two fixed axial bearings. At the bottom of each
piston, we assembled a tiny roller to be used as a follower.

Using compressed springs, the pistons are pushed towards
a set of rotary cams placed in a common horizontal axis.
The axis is respectively coupled to a brushless motor with
feedback (Model No. BLM-N23-50-1000-B). The setup re-
sembles the mechanical transmission system of a music box
as shown in Fig. 1 and allows one to deform the bottom of the
channel with a spatial distribution. Cams are shaped in such
a way that an oscillatory angular motion on the axis creates
a vertical oscillatory motion on the piston. In this way, both
the acceleration amplitude � (normalized by the acceleration
of gravity g) and frequency f of oscillations can be easily
programed through the motor controller. The motion of any
piston can be easily switched off by changing our special cams
to circular ones.

The channel trough was filled with a Photoflo-water so-
lution (concentration: 2%) up to 20 mm deep. Under uni-
form forcing (e.g., frequency f = 14.86 Hz), Faraday waves
emerge above an acceleration threshold of �c ≈ 0.3. The
waves display a central node in the crosswise direction. The
emerging waves were visualized using a high-speed camera.
The channel was front illuminated so a clear vertical cut of the
flow at the wall can be observed. A small amount of white dye
was added to the solution to improve visualization.

In Fig. 2, we display typical images of the observed waves
for different numbers of excited pistons. The snapshots in-
clude also the reconstructed free-surface deformation at the
wall η(x, t ) and the profile of the effective acceleration at the
surface �(x, t ) at t = tmax, i.e., when maximal deformations
are observed through a cycle. The curves were calculated
using standard edge-detection algorithms on the sequence of
images with a sensitivity of 0.1 mm.

Examples of the full spatiotemporal evolution of the free-
surface η(x, t ) are plotted in Fig. 3. While obtaining η(x, t )
is straightforward from the wavy free surface, the effective
acceleration at the surface, �(x, t ), was obtained by imaging
the surface of the liquid slightly below the instability threshold
�c, where the response is still linear, and then rescaling by
the driving amplitude � used in the experiments. It is a
known issue that the fluid layer acts as a longpass filter of

(a)

(b)

(c)

FIG. 2. Snapshots of the observed structures under localized forcing for different excitation regions: from top to bottom σi =
96, 176, 208 mm. Green continuous lines depict the detected free-surface deformations at the wall, while blue dashed curves, the profiles
of the effective acceleration at the surface.
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(a) (b)

FIG. 3. Spatiotemporal evolution of free surface (Faraday waves)
at the wall η(x, t ) for (a) n = 6 pistons and (b) n = 13 pistons.

the bottom motion so the effective deformation or acceleration
at the free surface is a smoothened version of the bottom
driving [29,30].

As shown in Figs. 2 and 3, the excitation of a reduced
bottom region generates wave patterns that are spatially lo-
calized. The patterns oscillate at half the forcing frequency
(parametric instability), which is the Faraday-waves signature.
The observed patterns, that we will refer to as localized Fara-
day waves, have a standing-wave core that emits evanescent
waves toward the unperturbed regions.

A. Pattern vs injection length

To compare how the wave pattern length depends on the
injection length, our measurement protocol was the following.
First, we chose the frequency in such a way that the wave-
length of the Faraday waves matches the interpiston distance.
Starting from the maximum number of excited pistons, i.e.,
n = 13, we acquired a video sequence of highly resolved im-
ages in both space and time. Then, we sequentially decreased
the number of excited pistons, hence reducing the length of
the injection region.

To characterize the wave localization, we perform the
following analysis on η(x, t ). First, we apply the temporal
Fourier transform and extract the phase and amplitude for
the dominant frequency f /2. In the standing-wave region, the
wave displays a constant phase along x that decreases linearly
as we enter into the wave-emission region. The amplitude,
on the other hand, displays a smooth decay in the wave-
emission region but a serrated shape on the standing wave.
The spatial envelope of the amplitude for the whole domain
was obtained by fitting a Gaussian curve on the amplitude
local maxima of the standing-wave region and the remaining
tails of the wave-emission one. The width of the envelope
is defined as σw ≡ HWHM, i.e., the half width at half max-
imum. Likewise, to characterize the injection localization, we
obtained the envelope of �(x, t ) and straightforwardly obtain
the HWHM, σi. The two quantities, the wave-envelope width
σw and the injection-envelope width σi, were measured for
runs with different number of pistons. Results are summarized
in Table I and displayed in Fig. 4.

B. Onset of localized Faraday waves

To study how localized Faraday waves emerge, we de-
signed twofold protocol for a given injection length (n = 13).
First, we started from the flat state and increased the amplitude

TABLE I. Our experiment parameters including the forcing am-
plitude �, the width of the injection region σi, and the width of
the wave envelope σw . In all cases, f = 14.86 Hz. Errors estimated
from the confidence intervals of the fitted parameters are negligible
(�0.5 mm).

n �c � σi (mm) σw (mm)

6 0.370 0.443 48 42
7 0.345 0.453 54 46
8 0.345 0.392 61 51
9 0.331 0.382 68 57
10 0.331 0.382 69 66
11 0.331 0.382 72 74
12 0.331 0.382 73 85
13 0.331 0.382 80 92

of oscillation with fine steps (0.1 mm, �� = 0.086), starting
from �i = 0.265 up to � f = 0.308. For each given �, we
waited ≈45 min. and checked that the wave pattern was
stationary throughout several cycles before making the mea-
surements. The second protocol was the same but we started
from � f and decreased sequentially down to �i. The results
are shown in Fig. 5. The system does not display hysteretic
behavior, which is the signature of supercritical bifurcations.

III. THEORETICAL DESCRIPTION OF LOCALIZED
FARADAY WAVES

It has been shown that the hydrodynamical problem of the
free surface of a fluid which is oscillated vertically in the
vicinity of Faraday instability can be reduced to an ampli-
tude equation for the envelope of the surface: the PDNLS
equation [27,28]. Subsequently, the equation has been de-
rived in different context as nonlinear lattices [31], optical
fibers [32], Kerr-type optical parametric oscillators [33], easy-
plane ferromagnetic materials exposed to oscillatory magnetic
fields [34,35], and parametrically driven damped chains of
pendula [19]. The governing equation for the envelope of the
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FIG. 4. Injected forcing variance σi as a function of pattern
variance σw for ν = 0.07 and μ = 0.0152. Theoretical (solid black
line), experimental (blue squares), and numerical (green circles) data
are depicted.
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FIG. 5. Localized Faraday-wave amplitude ηmax as a function of
the forcing amplitude � for n = 13 pistons. The wave displays four
nodes at frequency f = 14.61 Hz. The two series of experimental
data show increasing (blue �) and decreasing (green �) ramps in
�. The data is compared with a 1/4th power law, �(� − �c )1/4

(dashed line) with parameters � = 0.604 and �0 = 0.265 derived
from theory (no-fitted parameters).

water surface displacement of the transversal mode is

∂tψ = −iνψ − iA|ψ |2ψ − iB∂x′x′ψ − μψ + γ ψ̄, (1)

where ψ (x′, t ) stands for the complex envelope of the standing
waves and ψ̄ its complex conjugate; t is the dimensionless
time. Besides, ν is the detuning parameter which measures the
frequency offset to the parametric resonance, μ is the damping
parameter, and γ stands for the amplitude of the parametric
forcing. The parameters A and B are functions of the wave
number k. In particular, A ∼ k2 and B ∼ 1/k2. The relation
between the experiment quantities and the dimensionless pa-
rameters ν, μ, γ , as well as the envelope ψ and the time,
are given in detail in Refs. [27,36,37]. For our experiments,
it can be shown that |ψ |2 ∼ 10−3, μ ∼ 10−2, ν ∼ 10−1, and
γ ∼ 10−1. Notice that the PDNLS equation (2) applies only in
the limit ν ∼ μ ∼ γ � 1. For γ > μ, ν > 0, and γ 2 < ν2 +
μ2, the system exhibits subharmonic patterns with critical
wavelength kc = ±√

ν, i.e., Faraday waves. Setting a dimen-
sionless variable x′ ≡ √

Bx, where x is the dimensionless
space variable, we can rewrite the equation in the following
dimensionless form:

∂tψ = −iνψ − i|ψ |2ψ − i∂xxψ − μψ + γ ψ̄. (2)

A. Linear stability analysis

We extend Eq. (2) to heterogeneous systems by assuming
that γ ≡ γ (x) is a function describing the spatial profile of
the forcing. Following our experimental results, see, e.g., blue
dashed lines in Fig. 2, we assume that the injection profile γ

is a localized function satisfying three key features: (i) γ (x)
is symmetric with respect to a given x0, (ii) γ (x) has a single
extremum at x0 with nonvanishing second derivative, and (iii)
decays to zero as x → ±∞. For the sake of simplicity, we
choose γ (x) to be a Gaussian function:

γ (x) = γi exp

(
− x2

2σ 2
i

)
, (3)

where γi is the forcing amplitude and σi is a dimension-
less standard deviation, σi = σ ′

i /
√

B, where σ ′
i is a space

parameter.
The degree of heterogeneity of the system can be modeled

through the parameter ε ≡ 1/σ i, which should be small to
satisfy the condition of slow spatial dependence in γ (x). In the
original physical variables, the condition ε � 1 is equivalent
to requiring that the pattern wavelength λ is much smaller than
the variation length scale of the forcing. Indeed, ε = 1/σi =√

B/σ ′
i ∼ λ/σ ′

i � 1; thus λ � σ ′
i . Notice that this assump-

tion is in agreement with our experimental observations.
We linearize Eq. (2) around the trivial homogeneous steady

state and analyze the result and its complex conjugate (for de-
tails, see Appendix A). Considering γ (x) as a slowly varying
function of space, we obtain after some algebra,

[(∂t + μ)2 + (ν + ∂xx )2]ψ − γ (x)ψ = 0. (4)

Introducing the slowly varying variable X ≡ εx, Eq. (4) be-
comes

[(∂t + μ)2 + (ν + ε2∂XX )2]ψ − γ 2(X )ψ = 0, (5)

where γ (X ) = γi(1 − X 2/2) is the Taylor series expansion of
γ up to second order.

A particularly well-suited approach to find solutions in the
limit ε � 1 is the WKBJ approximation [5,9–12,38]. Thus we
propose the following expansion:

ψ (X, t ) = [A0(X ) + εA1(X ) + O(ε2)]e−iωt e

[
i
ε

X∫
Xs

k(X )dX

]
,

(6)

where A(X → ∞, t, ε) = 0, k(X ) is the pattern wave number
and Xs is the source point where the heterogeneous profile is
centered. Substituting the expansion (6) in (5), we obtain at
zeroth order (ε0) the dispersion relation

(−iω + μ)2 + (ν − k2)2 − γ 2(X ) = 0. (7)

Calculating higher orders of ε (see Appendix A), the solution
of (5) can be expressed in terms of a carrier wave (wavelength√

ν at dominant order) and an envelope A0(y ≡ √
εx), which

obeys

∂2
y A0 + (β2 − αy2)A0 = 0, (8)

where α ≡ μ2/4ν and β2 ≡ μ(γ1/2ν + iω1/2ν). Here γ1 and
ω1 have been introduced as γ 
 μ + εγ (1) and ω 
 εω(1).

Equation (8) is a linear eigenvalue problem with a discrete
set of solutions A0,m(y), each given in terms of the mth
Hermite polynomial Hm modulated by a Gaussian function;
i.e., A0,m(y) = Hm(α1/4y)e−(

√
α/2)y2

. The eigenvalue problem
also requires β2/

√
α = 2m + 1. Further calculations show

that the related quantities γ (1)
m = (2m + 1)

√
ν and ω(1)

m =
0 are now discrete. Likewise, γm = μ + (2m + 1)(

√
ν

σi
) and

ωm = 0. Notice that the corrections of the mode thresholds
γ c

m are inversely proportional to the parameter σi. This is
a counterintuitive result: smaller volumes of water require
higher forcing to generate patterns compared to larger ones.

We can infer that the first emerging mode in our experi-
ments is the fundamental one (m = 0), which in terms of x
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reads

A0(x) = e
− x2

2σ2
w , with σw =

(√
ν

μ
σi

)1/2

. (9)

This means that all the solutions derived from (5), including
the fundamental mode (9), display localization, which is the
key qualitative feature of localized Faraday waves.

Equation (9) also shows that the width σw of the envelope
A0 scales as the square root of the injection-region width σi,
which agrees with our experimental observation (see Fig. 4).
Indeed, to make quantitative comparisons, we first determine
the dimensionless quantities of Eq. (2) in terms of experi-
mental parameters. The formulas provided in [27,36] can be
used to directly compute γi and ν. The formulas available in
the literature for the damping coefficient μ however seem to
be not appropriate for our experimental conditions since in
our setup an extra shear occurs on the fixed wall. Hence we
considered μ as a phenomenological parameter, which we es-
timated by fitting (9) on the experimental data of Fig. 4. To test
the validity of our results we fitted a power law σw = aσ

p
i and

found (a, p) = (2.27, 0.480). The exponent p is remarkably
consistent with the predicted square-root dependence in (9).

B. Weakly nonlinear analysis

To describe the nonlinear saturation of the unstable global
modes, we have done a weakly nonlinear analysis of the sys-
tem close to the spatial instability. We introduce a bifurcation
parameter δ ≡ γ0 − γ

(1)
0 and a slowly varying amplitude Ci(t )

on the oscillations of the critical mode, i.e.,

ψc(x, t ) = Ci(t )(Xk + iYk )ei
√

νx + c.c. + h.o.h., (10)

where h.o.h. denotes the higher order harmonics. At the first
order of nonlinearity, one obtains that Ci is governed by
the well known normal form previously derived by Coullet
et al. [39],

∂tCi = δCi − 9

2μ
|Ci|4Ci. (11)

Here, Ci corresponds to the amplitude of oscillations of a
single oscillator. To introduce the spatial dependence of the
amplitude C, we first consider the dispersion relation (7),
obtained from the WKBJ formalism at order ε0,

−iω = −μ ±
√

γ 2(X ) − (ν − k2)2 + O(ε). (12)

Assuming that the nonlinear part of Eq. (11) has slow
variations in space and time compared to the linear terms,
then Eq. (11) in the Fourier space reads −iω = −μ + γ0 −
9|Ci|2/2μ. Thus, from Eq. (12), we notice that to introduce
the spatial dependence in our system we must map γ0 →
[γ 2(X ) − (ν − k2)2]1/2. One obtains for the fully heteroge-
neous system in the Fourier space the following expression:

−iω = −μ + f (X, k) − 9

2μ
|C|4, (13)

where f (X, k) ≡ [γ 2(X ) − (ν − k2)2]1/2. To consider the
growth of modes with wave number kc = ±√

ν due to the
parametrically extended Gaussian excitation, we consider a
Taylor expansion of the function f in (13) for X ≡ εx and

(a) (b)

(c)

FIG. 6. Numerical simulation of the onset of a localized Fara-
day wave from the homogeneous zero solution triggered by small-
amplitude noise. (a) A wave pattern obtained with γ0 = 0.22, ν =
0.2, μ = 0.14, and σ = 8.0 (γ (1)

0 < γ0 < γ
(1)

0 ). (b) Temporal evo-
lution of the pattern-envelope amplitude, showing the nonlinear
saturation. The envelope of the wave at the end of the simulation
has a nearly Gaussian-like profile, as shown in (c), suggesting the
instability of the fundamental Gauss-Hermite mode. Here, the green
solid line represents Re(φ), while the black dashed line represents
the envelope of Re(φ) obtained using the Hilbert transform. The
localized injection is also depicted as a reference (dash-dotted
blue line). Time is dimensionless (measured in fundamental period
units, T ).

k ∼ kc = ±√
ν. Neglecting terms of order O(ν3/2, X 4, k4)

and taking the inverse Fourier transform of (13), one obtains
that the amplitude C of the critical mode is governed by

∂tC = 2ν

μ
∂2

x C +
(
δ − μ

2σ 2
x2

)
C − 9

2μ
|C|4C, (14)

which is a dynamical Weber-like equation with a quintic
nonlinearity. In the homogeneous limit (σ → ∞), Eq. (14)
is similar to the normal form in [40] for a spatial supercrit-
ical quintic bifurcation in a homogeneously driven magnetic
system. Notice that after taking the linear limit of (14) one
recovers the Weber equation (8) for ω = 0.

To describe the nonlinear saturation of the fundamental
mode, we have used a multiple-scale expansion in Eq. (14)
to derive an evolution equation for its amplitude. After some
straightforward calculations—detailed in Appendix B—one
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FIG. 7. Spectra obtained numerically for ν = 1.0, μ = 0.45, and σi = 16.0. (a) Spectrum for γ
(0)

0 < γ0 < γ
(1)

0 . The inset shows a zoom-
out of the spectrum, showing a continuum set of eigenvalues with a nonvanishing imaginary part. (b) Spectrum for γ

(1)
0 < γ0 < γ

(2)
0 . The real

part of the eigenfunctions of the first two critical modes are indicated in each case.

obtains that the amplitude D0 of the fundamental mode is
governed by

∂t D0 = δD0 − 9

2
√

3μ
D5

0, (15)

from which follows the stationary solution Ds
0 =

(2
√

3μδ/9)1/4. This result agrees with the experimental
scaling law ηmax ∝ (� − �0)1/4 of Fig. 5 and describes
the evolution of a supercritical quintic bifurcation.
Furthermore, our theory predicts a scaling coefficient
(2

√
3μ/9)1/4 = 0.482 based on fundamental quantities

(μ = 0.14), which is shown as a dashed line in Fig. 5 with no
fitting parameters.

IV. NUMERICAL SIMULATIONS

As a final check, we also performed direct numerical
simulations of Eq. (2) with no-flux boundary conditions and
γ (x) given by expression (3). The first goal is to deter-
mine if the linear approximation we did to obtain Eq. (5)
remained valid for the set of (μ, ν, γ , σi ) that we chose.
Using a 400-point spatial grid with resolution dx = 0.25,
we used finite differences of second order of accuracy for
the space derivatives of Eq. (2). For the time integration
we ran a fourth-order Runge-Kutta scheme with a time step
dt = 0.0001.

To compare the solutions of the PDNLS equation with
experiments, it is important to remark that Eq. (2) gives
only a stroboscopic evolution of the surface instability.
Using φ ≡ ψ exp(iπ f t ), where ψ is the solution to the
PDNLS equation (2), from Re(φ) we can recover the
nonstroboscopic picture of the Faraday patterns. We plot
the result in Fig. 6(a), showing that the numerical solu-
tions of Eq. (2) not only successfully reproduce the enve-
lope of the localized Faraday waves but also its evanes-
cent waves in agreement with our experiments (shown in
Fig. 3).

An interesting feature that we put under test is that, ac-
cording to our linear stability analysis, even for γ0 > μ, there
will be no pattern formation if γ0 < γ

(0)
0 . In this case, the

amplitude of the injection is greater than the dissipation but
is too localized in space to sustain an instability. We have
confirmed this prediction in our experiments and numerical
simulations. Indeed, any initial perturbation on the system will
be eventually dissipated and end up decaying into the homo-
geneous stable solution Ah = 0. However, if we increase γ0

until we reach the region γ
(0)

0 < γ0 < γ
(1)

0 , a localized pattern
will appear due to the instability of the fundamental Gauss-
Hermite mode. This case is shown in the numerical simulation
of Fig. 6(a), where we used the homogeneous solution Ah = 0
as the initial condition and added a small-amplitude additive
noise of order 10−3. These small fluctuations are enough to
trigger the Faraday instability. According to Eq. (15), the
amplitude of the pattern begins to grow at an exponential rate
of D0 ∝ exp(δt ). Nonlinear contributions become important
as the amplitude of the instability grows, and the maximum
amplitude of the pattern, |C|, saturates due to the quintic
nonlinearity of Eq. (15), as evidenced in Fig. 6(b). In Fig. 6(c),
we show that the real part of the solution after saturation
displays an envelope that has a nearly Gaussian profile.

To give a more detailed insight of the stability properties
of the Gauss-Hermite modes, we have numerically computed
the spectrum of the linearized system following a similar
procedure as in Ref. [41]. First, we took the numerical so-
lution of the PDNLS equation (2) after the envelope of the
Faraday pattern has become steady. Then, we calculate the
set of eigenvalues and eigenfunctions of the linear operator
that describes the dynamics of small perturbations around the
Faraday-pattern solution. Typical spectra are shown in Fig. 7
as well as the eigenfunctions obtained numerically for the first
two eigenvalues. We expect from Eq. (4) that the spectrum of
the linear operator is degenerate. We have confirmed this fact
in our numerical results. For γ

(0)
0 < γ0 < γ

(1)
0 only the real

part of the first eigenvalue is positive, as shown in Fig. 7(a). In
this case, the Faraday pattern is formed due to the instability
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FIG. 8. Real part of the eigenvalues of the Gauss-Hermite modes
as a function of γ0, obtained from several numerical simulations for
ν = 1.0, μ = 0.45, and σi = 16.0. The modes turn unstable at the
values predicted by the linear stability analysis.

of the fundamental Gauss-Hermite mode. If we increase the
value of γ0 until we reach the region γ

(1)
0 < γ0 < γ

(2)
0 , the

eigenvalue of the first antisymmetric mode crosses the imag-
inary axis, as shown in Fig. 7(b). In this case, the Faraday
pattern is formed due to the contributions of modes m = 0
and m = 1, which are both unstable.

Finally, we have verified with several numerical simula-
tions that the Gauss-Hermite modes turn unstable at the values
of γ0 predicted by the linear stability analysis. Figure 8 shows
the real part of the eigenvalues of the Gauss-Hermite modes
from m = 0 to m = 3 as a function of the injection γ0. The
vertical dashed lines indicate the theoretical values of the
thresholds of instability for each of the modes. It is clear
that each of the Gauss-Hermite modes turns unstable at the
predicted values of γ0.

In summary, the results are very consistent. The theory
does not only match well the full-numerical simulation but
also the experimental results.

V. CONCLUSIONS

In conclusion, we have designed an experimental setup
with energy injection in a spatial region whose extent can
be controlled. The setup consists of a quasi-one-dimensional
rectangular water channel with a soft deformable bottom that
can be forced with a set of pistons. Above certain threshold
of vibration amplitude, the water surface destabilizes into
subharmonic Faraday waves that are localized in space and
emit evanescent waves.

Assuming that the width of the injection region is larger
than the characteristic pattern wavelength, we developed a
WKBJ approximation and a weakly nonlinear analysis on the
prototype model, i.e., the heterogenous PDNLS equation, to
describe our experimental observations. Using this framework
we have (i) derived the spatial profile of the observed patterns,
(ii) showed the emission of evanescent waves, (iii) computed
the dependence of the envelope width on the length of the
injection region, (iv) described how the parameter space of

the onset of instability modifies and discretizes with injection
localization, and (v) determined that localized Faraday waves
emerge via a supercritical quintic bifurcation. The results
presented here are helpful to understand the impact of param-
eter heterogeneities on pattern-formation processes in general
extended physical systems. It is noteworthy that this work is
a complete study of localized Faraday waves in laboratory
conditions and provides key physical and mathematical in-
sights on alligator’s water dance. Further studies on localized
injection with a shapeable bottom are in progress.
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APPENDIX A: SOLUTIONS OF LINEARIZED PDNLS
EQUATION UNDER HETEROGENEOUS FORCING γ (x)

At the next order O(ε), we obtain the equation
2k(ν − k2)∂X A0 − A0(ν − 3k2)∂X k = 0. Using relation (7),
we can now deduce an expression for A0, i.e.,

A0 ∝ exp

[−i
∫

F (k, ω, μ, γ0, ν, X )dX

∂ω/∂k

]
, (A1)

where F (k, ω, μ, γ0, ν, X ) ≡ ν−3k2

−iω+μ
∂X k. It is clear that, for

∂ω/∂k = 0, expression (A1) is singular. The points where
the singularity ∂ω/∂k = 0 take place are called turning
points [38]. On these points, the WKBJ approach is no longer
valid. Let ω0 ≡ ω(k0), where k0 is such that

∂ω(X )

∂k

∣∣∣∣
k=k0

= 0. (A2)

By definition, if the contour in the complex plane Im[ω0(X )]
exhibits a contact line or pinch between two branches X ±(ω0)
in a turning point X t that also verifies ∂ω0(X t )/∂X = 0, then
we deal with a double turning point [5,9–12]. In that case, the
scaling law that rules the system dynamics in the region close
to the double turning point is X = ε1/2y. In consequence, the
expansion takes the following new form:

ψ (y, t ) = [A0(y) + ε1/2A1(y) + O(ε)]e−iωt e

[
i

ε1/2

y∫
ys

k(y)dy

]
.

(A3)

As in the homogeneous case, we have two solutions for
∂ω/∂k = 0, (i) kc = 0 and (ii) kc = ±√

ν with ν > 0, which
correspond respectively to the angular frequencies

ω(kc) = i
[
−μ +

√
γ 2(X ) − ν2

]
, (A4)

ω(kc) = i[−μ + γ (X )]. (A5)
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Imposing the second condition (∂ω/∂X = 0) for the double
turning point, it follows that X t = 0 for both cases. On the
contrary, for different kc, we have different values of γ t .
For Faraday waves (ν > 0, γ > μ), the critical wavelength
is kc = ±√

ν and γ t = μ.
After making the corresponding replacements in the pa-

rameter expansions and provided that ε � 1, the spatial
forcing takes the form γ (x) = γi[1 − ε(y − yt )2/2 + O(ε2)].
We hence introduce small deviations from the turning point
{X t , γ t } through

γ = γ t + εγ (1) + O(ε2), (A6)

ω = ωt + εω(1) + O(ε2). (A7)

Thus we get the expression for the forcing in the turning point,
γ (y) = γ t + ε[γ (1) − γ t

0 (y − yt )2/2] + O(ε2). At dominant
order, k = kc = √

ν and Eq. (A3) reduces to ψ (y, t ) ∼
exp[i

∫ √
ν dy/ε1/2] [5]. Next, we replace ψ (y, t ) in (4) and

analyze the equations in orders of ε. At order O(ε0), we obtain
that A0 = Ā0. At order O(ε1/2), we get the relation

μ(A1 − Ā1) = 2
√

ν∂yA0. (A8)

Finally, at order O(ε), using A0 = Ā0 and relation Eq. (A8),
we obtain a Weber equation that describes the linear behavior
of the signal envelope A0,

∂2
y A0 + (β2 − αy2)A0 = 0, (A9)

where α ≡ μ2/4ν and β2 ≡ μ(γ (1)/2ν + iω(1)/2ν). The so-
lutions of (A9) are Hermite polynomials with a Gaussian
modulation, i.e., A0 = Hm(α1/4y)e−(

√
α/2)y2

. Due to the dis-
crete spectrum of the linear operator in (A9), we also require
β2/

√
α = 2m + 1, which imposes conditions over γ (1) and

ω(1). In terms of the original variable x, the solution is

A0(x) = Hν

(
α

1
4 σ

− 1
2

i x
)

e−x2/2σ 2
w ,

where Hm are the Hermite polynomials and the standard
deviation σw is given as

σ 2
w ≡

(
1√
α

)
σi =

(
2
√

ν

μ

)
σi.

We have shown that a weak spatial dependence of γ generates
a modulation on the wave pattern given by an amplitude
equation equivalent to a Weber-equation eigenvalue problem.

APPENDIX B: NONLINEAR SATURATION
OF THE FUNDAMENTAL MODE

In this Appendix, we give the derivation of the evolution
equation for the amplitude of the fundamental Gauss-Hermite
mode, when the system is close to the threshold of instability
γ c

0 . Let us define δc
m := γ c

m − μ, where γ c
m = μ + √

ν(2m +
1)/σi. We perform a multiscale development [42] in Eq. (14)
introducing new variables with different time scales according
to Ti := εit (with i = 1, 2, . . . ). Here, ε is a small adimen-
sional parameter introduced only for the multiscale analysis.

We search the field C(x, t ) in the form of a perturbative devel-
opment of functions of the different time scales according to

C(x, t ) :=
∞∑

i=1

εi/4Ai(x, T1, T2, . . .), (B1)

with a similar expansion in the bifurcation parameter

δ := δ0 + εδ1 + ε2δ2 + ε3δ3 + O(ε4). (B2)

Considering all these developments in Eq. (14), we proceed to
analyze the system at each order of ε.

1. Order ε1/4

At order ε1/4, Eq. (14) reads

∂2
x A1 + μ

2ν

(
δc

m − μ

2σ 2
x2

)
A1 = 0, (B3)

which is the Weber equation. Solutions of Eq. (B3) are given
by the Gauss-Hermite polynomials, which are denoted here
as A(n)

1 (x) ≡ Hn(α1/4x/σ 1/2
i ) exp(−x2/2σ 2

w ). Thus the general
solution of Eq. (B3) can be written as

A1 = D0(T1, . . .)A
(0)
1 +

∞∑
n=1

Dn(T1, . . .)A
(n)
1 , (B4)

which is a linear combination of the Gauss-Hermite modes
with time-dependent coefficients. The fundamental mode is
given by

A(0)
1 (x) = e−x2/2σ 2

w , (B5)

where σ 2
w ≡ σi

√
ν/μ. Thus the saturation of the fundamental

mode (B5) will be given by the time evolution of the coeffi-
cient D0(T1, . . .) in Eq. (B4).

2. Order ε5/4

At order ε5/4, Eq. (14) can be written as the linear problem

LA5 = b, (B6)

where

L ≡ ∂2
x + μ

2ν

(
δ0 − μx2

2σ 2

)
, (B7)

b ≡ ∂T1 A1 − δ1A1 + 9

2μ
A5

1. (B8)

The linear problem (B6) can be solved for A5 only if b is
in the image of the operator L. According to the Fredholm
alternative [4], at least one solution for A5 exists if ∃!|v〉 ∈
ker L†, such that 〈v|b〉 = 0. Notice that A(0)

1 ∈ ker L†, since
LA(0)

1 = 0 and L = L†. Thus the Fredholm alternative gives

〈
A(0)

1

∣∣b〉 = 0. (B9)
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The modes A(n)
1 for n � 2 are all stable near the threshold

of instability of the fundamental mode. Thus the amplitudes
Dn(T1) for n � 2 decay exponentially in time. Once the pat-
tern has completely evolved, one simply obtains

A1 
 D0(T1)A(0)
1 , (B10)

which is an even function in space. Inserting Eq. (B10) in
Eqs. (B8) and (B9), one obtains the solvability condition

∂T1 D0 = δ1D0 − 9

2
√

3μ
D5

0, (B11)

from which follows Eq. (15).
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