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a b s t r a c t 

In magnetic films driven by spin-polarized currents, the perpendicular-to-plane anisotropy 

is equivalent to breaking the time translation symmetry, i.e., to a parametric pumping. In 

this work, we numerically study those current-driven magnets via the Landau–Lifshitz–

Gilbert–Slonczewski equation in one spatial dimension. We consider a space-dependent 

anisotropy field in the parametric-like regime. The anisotropy profile is antisymmetric to 

the middle point of the system. We find several dissipative states and dynamical behav- 

ior and focus on localized patterns that undergo oscillatory and phase instabilities. Using 

numerical simulations, we characterize the localized states’ bifurcations and present the 

corresponding diagram of phases. 

© 2020 Published by Elsevier B.V. 

 

 

 

 

 

1. Introduction 

Non-equilibrium systems present complex dynamics [1,2] , including pattern formation [2,3] , localized states [2] , and 

chaotic behaviors [1] . Nanometric magnetic systems exhibit quasi-Hamiltonian dynamics, perturbed by a relatively small 

injection and dissipation of energy [4] . Domain walls [5,6] , self-sustained oscillations [7,8] , textures [9–12] , topologi-

cal [13,14] and non-topological [12,15–17] localized states are examples of non-equilibrium states of driven nanomagnets. 

These are solutions of a nonlinear partial differential equation that governs the magnetization dynamics in the continuum 

limit, namely the Landau–Lifshitz–Gilbert–Slonczewski (LLGS) model [4] . Even though Landau and Lifshitz published the 

first form of this equation in 1935 [18] , it is still widely investigated and revised to incorporate recently discovered effects.

For example, electric currents with a polarized spin [19,20] are modeled as a non-variational term that injects energy and

favors limit cycles [7,8] . Also, the dispersion of magnetization waves can be generalized to include anisotropic terms that 

create topological textures [13] . A third relevant mechanism is the modulation of the magnetic anisotropy fields by applied

voltages in insulating structures. Since these fields are responsible for the saturation of the magnetization near equilibria 

(i.e., they are the most relevant nonlinearities of the LLGS equation), their tuning by electric fields promises a space or

time-dependent control of both the linear and nonlinear parts of the LLGS system. 

The voltage-controlled magnetic anisotropy (VCMA) effect [21–24] promises memory devices with low power consump- 

tion due to the absence of Joule dissipation. Furthermore, VCMA can induce several magnetization responses. For example, 
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a voltage pulse can assist [22] or produce [23] the switching of the magnetization between two equilibria. Voltages oscil- 

lating near the natural frequency generate resonances [24] . On the other hand, if the voltage oscillates at the twice natural

frequency, parametric instabilities [25,26] , Faraday-type waves, and localized structures emerge [17] . These phenomena also 

appear in other parametrically driven systems that are excited by a force that simultaneously depends on time and the state

variable. Magnetic anisotropies can be manipulated by applying a strain to the magnetic medium, via the modulation of its 

thickness and doping with heavy atoms. While temporally modulated magnetic anisotropies receive considerable attention, 

the self-organization arising from its static non-uniform counterpart has not been fully explored. 

In this work, we study the Landau–Lifshitz–Gilbert–Slonczewski equation in one spatial dimension, representing a mag- 

net subject to a magnetic field, a spin-polarized charge current [7,8,19,20] , and a non-uniform perpendicular magnetic 

anisotropy. We focus on the parameter values where the current acts as additional damping and stabilizes an equilibrium 

that would otherwise be unstable. In this regime, the magnet behaves as a parametrically-driven system, even if its pa- 

rameters are time-independent. The parametric nature of the magnet manifests as a breaking of symmetry induced by the 

magnetic anisotropy field, in the same way as a time-varying force breaks the time-translation invariance in parametrically 

driven systems. Furthermore, the LLGS equation can be mapped to the parametrically driven damped Nonlinear Schrödinger 

equation (pdNLS), which is the paradigmatic model of parametrically forced systems. In this transformation, the current acts 

as damping, the applied magnetic field is a frequency shift or detuning, and the anisotropy field is equivalent to a paramet-

ric injection of energy. Regarding the anisotropy field, the considered field profile is the sum of two Gaussian functions with

opposite signs. We find that localized patterns emerge when the anisotropy field is large enough, as occurs in parametrically 

driven systems with a heterogeneous excitation [27] . 

Those localized patterns can be dynamic or stationary, depending on the parameter values. For example, when the ab- 

solute value of the anisotropy at the left and the right are not the same, localized patterns drift. Via the calculation of the

eigenvalues of the fixed pattern near the drifting transition, we find that a stationary instability is responsible for this bifur-

cation. This instability is of a subcritical type, which creates bistability between drifting and pinned patterns. If the modulus 

of the left and right anisotropy fields are similar, an oscillatory (Andronov-Hopf) instability occurs when the modulus of the 

charge current is below a threshold. Similar results replicate as the separation distance between the left and the right of

the anisotropy varies. 

The anisotropy profile considered here resembles some properties of the so-called parity-time ( PT )- symmetric systems, 

which are characterized by internal gain and loss but conserve the total energy. Recently, the generalization of PT - symmetric 

systems to include injection and dissipation of energy as a small perturbation, i.e., quasi- PT -symmetric systems , have gath- 

ered some attention, see [28] and references therein. Phase transitions in out-equilibrium magnetic systems, via the breaking 

of a PT -symmetry, have been reported [29–31] . For example, in Refs. [29,30] , with the use of a spin Hamiltonian with

an imaginary magnetic field, one arrives at the LLGS equation [29] . A phase transition between conservative and non-

conservative spin dynamics is discussed in terms of the PT -symmetry and extended to spin chains [30] . Stable solitons

in nearly PT -symmetric ferromagnet with the spin-torque oscillator with small dissipation have been also investigated [31] . 

The article is organized as follows. In the next section, we introduce the LLGS equation and transform it into an amplitude

equation with broken phase invariance (i.e., the pdNLS equation). In Section 3 , we show our numerical results, while our

conclusions and remarks are in Section 4 . 

2. Landau–Lifshitz–Gilbert–Slonczewski equation 

Let us consider a ferromagnetic medium with two transverse lengths small enough to guarantee that the magne- 

tization remains uniform in those directions (i.e., the magnetization varies along one axis only). Its magnetization is 

M (x, t) = M s m (x, t) , where M s is the norm, and m is the unit vector along the orientation of M . The dimensionless space

and time coordinates are x ∈ [0 , L ] and t ∈ [ t 0 , t f ] , respectively, where L is the length of the magnet, and t 0 and t f are the ini-

tial and end time of the simulation. The magnet is part of a so-called nano-pillar structure, see Fig. 1 (a). There is an applied

magnetic field h = h e x , where { e x , e y , e z } are the unit vectors along the corresponding Cartesian axis. The spatiotemporal

dynamics of the magnetization obeys the Landau–Lifshitz–Gilbert–Slonczewski equation, which in its dimensionless form 

reads [4] 

∂ t m = − m × h eff + gm × ( m × e x ) + αm × ∂ t m , (1) 

h eff = h e x + ∂ 2 xx m − h d (x ) m z e z , (2) 

where the first term of Eq. (1) induces energy-conservative precessions around the effective magnetic field h eff. It has con-

tributions from the external field h e x , the exchange (or dispersion) field in one spatial dimension ∂ 2 xx m , and the anisotropy

field −h d (x ) m z e z . The function h d is the sum of the magnetocrystalline anisotropy and the demagnetizing field in the local

approximation. The effective field is the functional derivative of the magnetic energy E M 

, h eff ≡ −δE M 

/δm , where 

E M 

= 

∫ L 

0 

dx 

[
−hm x + 

h d (x ) 

2 

m 

2 
z + 

| ∂ x m | 2 
2 

]
. (3) 

The second term of the LLGS equation is the spin-transfer torque [19,20] induced by the current and parametrized by g. This

is a non-variational effect that can inject into (for g > 0 ) and dissipate (for g < 0 ) the magnetic energy. Finally, the third term
2 
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Fig. 1. Schematic representation of the setup under study. A magnet with unit magnetization m is affected by a magnetic field h and charge current. The 

current is spin-polarized after traversing a thicker magnet with magnetization along the unit vector e x . We focus on the layer with a variable perpendicular- 

anisotropy coefficient, which is represented as a thin layer with variable thickness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of Eq. (1) is a phenomenological Rayleigh-like dissipation, ruled by the dimensionless parameter α. Typical values [4] of g

and α are g ∼ 10 −3 and α ∼ 10 −3 − 10 −2 , respectively. 

Two equilibria of Eq. (1) exist for all parameter values. In the first equilibrium, the magnetization is parallel to the spin

polarization of the charge current ( m = e x ) and the other where they are antiparallel ( m = −e x ). Positive (negative) values

of g tend to destabilize (stabilize) the equilibrium m = e x . On the other hand, positive (negative) fields h favor (disfavor) the

state m = e x . Then, in this type of nanometric magnets, there can be two competing effects, the current and the field, and

non-trivial non-linear dynamics emerge. 

The magnetization dynamics induced by the combination of currents and fields have several similarities [12] with sys- 

tems subject to a forcing that oscillates at twice their natural frequency, namely, parametrically driven systems . This as- 

sociation becomes evident when using the so-called Stereographic mapping ψ = (m y + im z ) / (1 + m x ) , which projects the

magnetization field on the unit sphere m 

2 = 1 to the complex plane (see Ref. [12] and references therein). The resulting

amplitude equation reads 

( i + α) ∂ t ψ = ( ig − h ) ψ − h d 

2 

( ψ − ψ 

∗) 
1 + ψ 

2 

1 + | ψ | 2 + ∂ 2 xx ψ − 2 ψ 

∗( ∂ x ψ ) 
2 

1 + | ψ | 2 , (4) 

with ψ 

∗ being the complex conjugate of ψ . The equilibrium m = e x is mapped to ψ = 0 . 

Note that the perpendicular anisotropy coefficient controls both the parametric injection of energy [i.e., terms propor- 

tional to ψ 

∗ in Eq. (4) ] and the cubic saturation terms. Then, we expect that the modulations of h d will produce appealing

dynamical effects. See also that the role of the nonlinear gradients 2 ψ 

∗( ∇ψ ) 
2 
/ ( 1 + | ψ | 2 ) in the dynamics can become more

critical compared to the one of the relatively week anisotropy-induced saturations. 

In the next section, we numerically solve Eq. (1) . However, for pedagogical reasons, let us analyze here its similarities to

the pdNLS model. 

Let us consider the scaling α ∼ | g| ∼ | h | ∼ | h d | � 1 , which ensures that each effect (dissipation, detuning, dispersion, and

phase-invariance-breaking term) appears once in the equation. This scaling is not difficult to obtain since the current ( g) 

and magnetic field ( h ) are control parameters that can be tuned to be of the order of the damping ( α). Beyond the voltage-

controlled magnetic anisotropy [21–24] where h d is a control parameter but needs an insulating layer, the anisotropy field 

can be engineered by bulk [32,33] and interfacial [34] spin-orbit interactions and magnet thickness, magnetostriction [35] , 

periodic modulation of surfaces [36] , among other mechanisms. With those considerations, Eq. (4) at linear order, reads 

∂ t ψ = −μψ − i 
(
ν + ∂ 2 xx 

)
ψ − iγψ 

∗, (5) 

where μ = −g, ν = −h − h d / 2 , and γ = h d / 2 . The previous equation is the linear version of the well-known parametrically

driven damped NonLinear Schrödinger (pdNLS) equation, which governs the dynamics of classical systems subject to a force 

that simultaneously depend on time and the state variable. In those systems, the parameter μ accounts for the energy 

dissipation, ν is the detuning between half the forcing frequency and the natural frequency of the system, and γ is the 

strength of the energy-injection. 

Note that in the studied system, the parameters related to the energy injection ( γ ) and detuning ( ν) depend on the

anisotropy field h d (x ) . Also, from Eq. (5) , we know that patterns or Faraday-type waves [37] emerge in the magnetic system

for v ≥ 0 and γ ≥ μ [12] . 

The nonlinear dynamics of nanomagnets with uniform anisotropy coefficients have been extensively studied in the lit- 

erature. In the next section, we focus our attention on systems with a non-uniform anisotropy. Some mechanisms that can 

produce a non-uniform anisotropy are films with interfacial anisotropy and variable thickness. 
3 
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Fig. 2. Dynamics of closely interacting localized patterns. The dynamical regimes of drifting, stationary and phase-oscillatory patterns are exemplified in the 

left, central, and right panels. (a) shows the anisotropy (or, equivalently, the parametric injection) profile as a function of the position x for βzL = 0 . 71 (left), 

βzL = 0 . 8 (center), and βzL = 0 . 9 (right). The Gaussian functions are very close, which produces a strong coupling of the localized patterns. Panel (b) is the 

spatiotemporal diagram of m y for the same βzL values of (a). As these diagrams illustrate, for small βzL , the patterns have a drifting-like phase dynamics. 

For moderate values, the localized pattern is stationary. For quasi-symmetric injection parameters, βzL � βzR = 1 , a breathing-type phase dynamics appears. 

(c) shows the snapshots of m y at the times when the maximum value is reached, max [ m y (x, t) ] . (d) Diagram of phases using the maximum value of the 

magnetization y th component, max [ m y (x, t) ] , for a given set of parameters. (e) The oscillation amplitude of the pattern 	m y for a set of parameters. The 

number 	m y is defined as the standard deviation of m y (x 0 , t) , where is the position where the maximum max [ m y (x, t) ] is achieved. 

 

 

 

 

 

 

3. Non-uniform anisotropy field 

Let us consider the anisotropy profile 

h d (x ) = βzL e 
− ( x −x L ) 

2 

2 σ2 − βzR e 
− ( x −x R ) 

2 

2 σ2 , (6) 

where x L = L/ 2 − a and x R = L/ 2 + a are the centers of the left and right Gaussians, respectively. The parameter 2 a = | x L − x R |
controls the separation between the Gaussian maxima, σ is the characteristic width and L is the device length. Thus, the 

injection of energy is controlled by four parameters, namely { βzL , βzR , a, σ } . When the device is large enough, the spatial

average of the Eq. (6) is 
∫ L 

0 dxh d (x ) ≈ ∫ ∞ 

−∞ 

dxh d (x ) = 

√ 

2 πσ ( βzL − βzR ) . Then, no net parametric-like injection of energy occurs

for βzL = βzR . However, rich self-organization is expected from this driving mechanism [28] . It is worth noting that in other

parametrically driven systems with heterogeneous forcing, the qualitative dynamics are insensitive to the specific form of 

the injection function if its maximum value and characteristic width are similar [27] . Furthermore, there is an agreement

between experiments in fluids vibrated with a square-like spatial profile and theory with Gaussian and parabolic model- 

ings [27] . 

In addition to the spatial instability mentioned in the previous section, another bifurcation takes place when μ changes 

its sign. It occurs when the spin-polarized current injects energy into the system and induces an Andronov-Hopf (oscillatory) 

instability. At the bifurcation point, μ ≡ 0 , the oscillator has injection and dissipation of energy only in the nonlinear terms

of its equation of motion, and the system has some similarities with the ones with PT -symmetry. 
4 
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Fig. 3. Stability spectrum in the closely interacting limit. The eigenvalues λ j are plotted in the complex plane, with Re( λ j ) and Im( λ j ) being the real and 

imaginary parts of λ j , respectively. (a) A stationary instability takes place when reducing βzL . Indeed, when βzL → βc1 , the eigenvalues with the largest 

real part reduce their imaginary component and cross the vertical axis at the origin. For βzL < βc1 , only drifting-like motions are observed, see Fig. 2 . On 

the other hand, for βc1 < βzL < βc2 , both the stationary and the localized drifting patterns are stable. (b) Spectrum far from any bifurcation bifurcations, 

all eigenvalues have a negative real part, which characterizes stable states. (c) Onset of the Andronov-Hopf instability. The leading modes have a finite 

frequency. For βc3 < βzL , the localized patterns exhibit a phase-breathing-like oscillatory dynamics, as illustrated on the spatiotemporal diagram of Fig. 2 (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We integrate Eq. (1) using a fifth-order Runge-Kutta algorithm with parameter values similar to the following set: α = 

0 . 05 , g = −0 . 1 , h = −0 . 4 , βzL = 1 , βzR = 1 , a = 6 , and σ = 3 . 0 . The simulation box is discretized as L = dx (N − 1) , with step

size dx = 0 . 25 and N = 512 simulation points. We use specular boundary conditions, i.e., the magnetization gradient vanishes

at the borders ( ∂ x m ) ( 0 , t ) = ( ∂ x m ) ( L, t ) = 0 . The magnetization norm, 
[∑ 

i m 

2 
i 
/N 

]1 / 2 
is monitored and never deviates from 

1 more than 10 −5 , which is enough precision for this work. 

3.1. Limit of strong interaction 

Let us start with the limit where the two Gaussians are close to the center but a different am plitude ( βzL 
 = βzR ), see

Fig. 2 (a). As it occurs in parametrically driven systems with homogeneous [37] and heterogeneous [27] energy injections, the

parametrically-induced spatial instability creates a texture, as shown in Fig. 2 (b) and (c) for the spatiotemporal diagrams and

snapshots of the m y variable. We fix βzR = 1 and change the values of βzL . For βzL < βc1 , the patterns exhibit a drifting-like

dynamics where they continuously travel to the center of the simulation. The left-traveling waves have a larger amplitude 

because they are excited by a stronger forcing βzR > βzL . The left panel of Fig. 2 (b) and (c) illustrate the drifting solutions.

When the βzL value is increased above a threshold, stationary patterns emerge subcritically, creating a hysteresis zone in 

βc1 ≤ βzL ≤ βc2 . In the region βc2 ≤ βzL ≤ βc3 , only the stationary patterns are observed, while for βzL > βc3 the pattern 

undergoes an oscillatory instability that produces breathing-like motions of the pattern phase. 

The maximum value of the m y component, max [ m y (x, t) ] , is a single number that measures the amplitude of the pat-

tern. On the other hand, the standard deviation 	m y of the temporal series m y (x 0 , t) , where x 0 is the position where the

max [ m y (x, t) ] is reached, provides useful information of the oscillatory character of the solutions. Fig. 2 (d) and (e) reveal

the diagram of phases of the system in the strong interaction limit using max [ m y (x, t) ] and 	m y , respectively. 

The analytic study of the instabilities of non-uniform states in systems with non-uniform parameters is a hard task. 

However, one can conduct a numerical study as follows. Let us start writing the magnetization vector in the Spherical

repsentation, m = sin θ
(
cos φe x + sin φe y 

)
+ cos θe z . The dynamical variables θ (x, t) and φ(x, t) are the polar and azimuthal 

angle, respectively. Integrating Eq. (1) , one obtains the stationary solution of the localized pattern, { θ0 (x ) , φ0 (x ) } , and the 

small deviations around this state satisfy { δθ0 , φ0 } = 

∑ 

j e 
λ j t �

 u j . The eigenvalues λ j can be obtained numerically after diag- 

onalizing the Jacobian matrix of Eq. (1) for the state { θ0 (x ) , φ0 (x ) } . Starting from a numerically solved stationary pattern 

state, Fig. 3 shows the stability spectrum near the subcritical transition to a drifting pattern in (a), in the zone of stationary

patterns in (b), and close to the oscillatory instability in (c). The spectrum allows us to categorize the transitions at βzL = βc1 

and βzL = βc3 as stationary and Andronov-Hopf bifurcations, respectively. 

Similar results replicate as the separation distance between the left and the right of the anisotropy varies. For βzL =
0 . 75 and βzR = 1 fixed, we varied the separation parameter a in the interval 2 ≤ a ≤ 12 . 5 . Fig. 4 (a) displays the different

dynamical regimes for interacting localized patterns as a function separation parameter a . For values smaller than a min = 2 ,

the pattern disappears due to the partial cancellation the Gaussians. A drifting-like behavior is observed for a min < a <

a c1 = 5 [shown in Fig. 4 (b)]. Given both Gaussians are interacting strongly in this limit, the drift is more complex that one

observed in the previous case, Fig. 2 (b). The right-traveling waves struggle to enter into the left region. In contrast, stationary

and oscillatory regimes, shown in Fig. 4 (c) and (d), are similar to the ones of Fig. 2 . The stationary-drifting bifurcation

is subcritical-type, showing a bistability region in the interval a c1 < a < a c2 = 7 . 5 , while a supercritical one describes the

emergence of oscillatory patterns at the critical value a c2 . Small differences observed in paths for a < a c1 and a > a c2 are

numerical. 
5 
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Fig. 4. Dynamics of interacting localized patterns as a function of the separation parameter a . (a) Diagram of phases using the maximum value of the 

magnetization y th componente, max[ m y (x, t) ] as a function of the separation parameter, for a given set of parameters. For fixed value βzL = 0 . 75 and βzR = 

1 , the patterns have a drifting-like phase dynamics for a < a c1 = 5 . For a c1 < a < a c2 a stationary pattern is observed. A breathing-type phase dynamics 

appears for a > a c2 = 7 , 5 . The dynamical regimes of drifting, stationary and phase-oscillatory patterns are exemplified in (b), (c) y (d), respectively. 

Fig. 5. Dynamics in the diluted regime. The separation between the anisotropy field peaks is a = 20 , which guarantees that the excited localized states 

interact only slightly. (a) Spatiotemporal diagram for the stationary localized pattern (left), oscillating texture (center), and both an oscillatory and a static 

pattern (right). Panel (b) shows a snapshot of the m y variable at a given time. (c) and (d) show the bifurcation diagram of the left localized pattern in 

terms of the maximum and standard deviation of the m y temporal series, equivalent to the graphs of Fig. 2 (d) and (e). The stability spectrum is shown in 

(e), and it reveals a pair of eigenvalues with large imaginary components. As the current parameter g increases, the real part of those eigenvalues becomes 

positive, leading to the self-sustained oscillations. 

6 
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3.2. Diluted limit 

In this subsection, we present our results in the limit where the Gaussians are far away, and consequently, the dissipative

structures at the right and left zones are only slightly interacting. When the injection peaks are well separated, the ampli-

tude mismatch βzL − βzR is not important for the dynamics. Thus, we use the values βzL = βzR = 1 and vary the current

parameter g. When g → 0 , the dominant dissipation mechanism vanishes, and the equilibrium m = e x loses its stability.

Then, when reducing | g| , we expect the emergence of dynamical states. Fig. 4 summarizes our results. For very negative

values of the current g, that is for significant dissipation μ, only one pattern emerges, see Fig. 4 (a) and (b). When the

dissipation goes to zero, the stationary pattern loses stability via a supercritical [see Fig. 5 (c) and (d)] Andronov-Hopf [see

Fig. 5 (e)] bifurcation. The new state emits evanescent waves from its core. For even larger values of the current, the right

Gaussian stabilizes a static texture. 

4. Conclusions and remarks 

Nanoscale magnetization dynamics attract considerable attention due to their appealing non-equilibrium behaviors and 

the associated technological applications. A driving mechanism recently discovered is the modulation of the anisotropy 

field via the application of voltages, tuning the magnet thickness, and interfacial doping. The temporal modulation of 

the anisotropy function has gathered considerable attention. However, texture formation and dynamics by heterogeneous 

anisotropy fields remain mostly unknown. This work is a step in this direction. We studied the self-organization of a one-

dimensional magnetic medium driven by an applied magnetic field, a spin-polarized electric current, and a non-uniform 

anisotropy field. The well-known Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation describes this system. We concen- 

trated on the parameter sets where the magnet is equivalent to a parametric resonator, even if the magnet is only subject

to time-dependent forcing mechanisms. 

The starting point of this manuscript is a simple model based on the one-dimensional and local approximations. How- 

ever, the numerous and challenging behaviors found justify the use of such approximations as a necessary first step before 

exploring more elaborate conditions. 

The profile of the anisotropy field is a sum of two Gaussian functions with opposite signs. We found a family of localized

pattern states. They can be stationary, drifting, or oscillatory textures. In the strong interaction regime, the localized drifting 

patterns originate from a stationary instability of a static texture, as shown via the calculation of the linear spectrum of the

pattern. On the other hand, when the Gaussian functions have similar absolute values, then the patterns undergo an oscil- 

latory (Andronov-Hopf) bifurcation with a breathing phase mode. When the anisotropy field is composed of well-separated 

peaks, only one transition is observed, namely, localized patterns transit between stationary to phase-oscillatory regimes 

when the dissipation or injection parameters are modified. 

Our findings may motivate the use of localized patterns as effective individual oscillations with the capacity to couple 

and interact, and could potentially be used as units of a nano-oscillators network. 
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